Let's talk immunity!

Our belief

Our belief
The immune system plays an essential role in protecting an infant from illness. But it is complex; the way an infant’s immune system develops and functions depends on a variety of elements, many of which are not yet fully understood. What we do know is that for a new-born, breast milk offers the most important source of defence , because it contains protective proteins such as immunoglobulins and lactoferrin, alongside human milk oligosaccharides (HMOs) and long chain polyunsaturated fatty acids (LCPUFAs) [1] . These compounds impact the immune system in a number of different ways, from demonstrating anti-pathogenic effects and supporting gut barrier function to balancing microbiota [1].
At FrieslandCampina Ingredients we believe that delivering the right combination of nutrients with the right mechanisms makes all the difference in building and strengthening infant immunity. That’s why we offer a broad range of ingredients that all offer their own specific potential to support the infant immune system [5-41].
Immunity is of top priority for parents

Immunity is of top priority for parents
According to a recent global survey, 59% of parents are concerned about their infant’s immune health, which makes immune health the Number 1 concern amongst parents of 0-1 year olds. Parents indicate that immune-related symptoms such as diarrhoea, runny nose, cough and fever have affected their children most frequently in the last six months.
Important immunity mechanisms in early life
When a baby is born, its immune system has not yet fully matured. During the final stage of pregnancy and when breast feeding, the baby receives a certain amount of bioactive proteins (e.g. immunoglobulins) from the mother, which offers a great start when it comes to inhibiting pathogens [2].
However, those bioactive protein levels decrease within a few months following birth, and are absent entirely if breast feeding is not possible. In such cases, it’s all the more important that a new-born’s immune system develops quickly and grows strong to protect the infant when exposed to pathogens and other external threats. As 70% of the immune system is in the gut [3], gut health plays an important role in immunity. In other words: the inside matters, and the immune system needs to be built with the right support from within.
From a scientific standpoint, there are three key elements that help to build and strengthen the immune system, via different but interactive mechanisms: microbiota, gut barrier and anti-pathogenic effects [4]. Some specific nutrients in human milk support these 3 mechanism, in one way or another [1]
Related Ingredients
Vivinal® GOS
Supports immunity by stimulating growth of healthy bacteria (e.g. Bifidobacteria) in the infant gut21,22, reducing the risk of infections23-25 and supporting gut barrier function26,27
Vivinal® MFGM
Supports the development of the immune system via its potential role in gut maturation5-9, gut barrier function and by reducing the risk of infections10-13
Vivinal® Lactoferrin
Can strengthen immunity by reducing the risk of infections14-20
Aequival® 2’-FL
Can support immunity by stimulating the growth of Bifidobacteria28,29, reducing the risk of infections30-33, and via its potential role in gut maturation34 and anti-inflammation35,36
Vana-Sana ® Micro-encapsulated LC-PUFA oils
Features DHA and ARA, which may support immune development and function, via the cells of the adaptive immune system37-40, while assisting gut barrier integrity41
References
- Field, C. J. Recent Advances in Nutritional Sciences The Immunological Components of Human Milk and Their Effect on Immune Development in Infants 1 , 2. 1–4 (2005).
- Turfkruyer, M. & Verhasselt, V. Breast milk and its impact on maturation of the neonatal immune system. Curr Opin Infect Dis 28, 199–206 (2015).
- Vighi, G., Marcucci, F., Sensi, L., Di Cara, G. & Frati, F. Allergy and the gastrointestinal system. Clin. Exp. Immunol. 153, 3–6 (2008)
- Ximenez, C. & Torres, J. Development of Microbiota in Infants and its Role in Maturation of Gut Mucosa and Immune System. Arch. Med. Res. 48, 666–680 (2017)
- Anderson RC, MacGibbon AKH, Haggarty N, et al (2018) Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity. PLoS One. 2018 Jan 5;13(1):e0190839.
- Motouri M, Matsuyama H, Yamamura J, et al (2003) Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. J Pediatr Gastroenterol Nutr. 2003 Feb;36(2):241-7
- Lee H, Zavaleta N, Chen S-Y, et al (2018) Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. npj Sci Food 2:6.
- Snow DR, Ward RE, Olsen a, et al (2011) Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. J Dairy Sci 94:2201–2212.
- Bhinder G, Allaire JM, Garcia C, et al (2017) Milk Fat Globule Membrane Supplementation in Formula Modulates the Neonatal Gut Microbiome and Normalizes Intestinal Development. Sci Rep 7:45274.
- Zavaleta, N. et al. Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. J. Pediatr. Gastroenterol. Nutr. 53, 561–568 (2011).
- Timby, N. et al. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 60, 384–389 (2015).
- Li F, Wu SS, Berseth CL, et al (2019) Improved Neurodevelopmental Outcomes Associated with Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula: A Randomized, Controlled Trial. J Pediatr 215:24-31.e8.
- Veereman-Wauters, G. et al. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition 28, 749–752 (2012).
- Donovan, Sharon M. 2016. “The Role of Lactoferrin in Gastrointestinal and Immune Development and Function: A Preclinical Perspective.” Journal of Pediatrics 173. Elsevier Inc.: S16–28. doi:10.1016/j.jpeds.2016.02.072.
- Manzoni, P. Clinical Benefits of Lactoferrin for Infants and Children. J. Pediatr. 173, S43–S52 (2016).
- Chen, K. et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition 32, 222–227 (2016[DD(1] )
- King, J. C. et al. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J. Pediatr. Gastroenterol. Nutr. 44, 245–251 (2007).
- Gao, Y. et al. Enteral Lactoferrin Supplementation for Preventing Sepsis and Necrotizing Enterocolitis in Preterm Infants : A Meta‑Analysis With Trial Sequential Analysis of Randomized Controlled Trials. Front. Pharmacol. 11, 1186 (2020).
- Tarnow-Mordi, William O., Mohamed E. Abdel-Latif, Andrew Martin, Mohan Pammi, Kristy Robledo, Paolo Manzoni, David Osborn, et al. 2020. “The Effect of Lactoferrin Supplementation on Death or Major Morbidity in Very Low Birthweight Infants (LIFT): A Multicentre, Double-Blind, Randomised Controlled Trial.” The Lancet Child and Adolescent Health 4 (6): 444–54.
- Johnston, W. H. et al. Growth and tolerance of formula with lactoferrin in infants through one year of age: double-blind, randomized, controlled trial. BMC Pediatr. 15, 173 (2015).
- Ben, X.-M. et al. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in infants. Chin. Med. J. (Engl). 117, 927–931 (2004).
- Fanaro, S. et al. Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study. J. Pediatr. Gastroenterol. Nutr. 48, 82–8 (2009).
- Arslanoglu, S., Moro, G. E. & Boehm, G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J. Nutr. 137, 2420–4 (2007).
- Arslanoglu, S. et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 138, 1091–1095 (2008).
- Ranucci, G. et al. Galacto-oligosaccharide/polidextrose enriched formula protects against respiratory infections in infants at high risk of atopy: A randomized clinical trial. Nutrients 10, (2018).
- Akbari, P. et al. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell. J Nutr 145, 1604–1613 (2015).
- Krumbeck, J. A., Rasmussen, H. E., Hutkins, R. W., Clarke, J. & Shawron, K. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6, 1–16 (2018).
- Yu, Z. T. et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 23, 169–177 (2013).
- Lewis, Z. T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13 (2015).
- Weichert, S. et al. Bioengineered 2’-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 33, 831–8 (2013).
- Morrow, A. L. et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145, 297–303 (2004).
- Puccio, G. et al. Effects of Infant Formula with Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. JPGN 64, 624–631 (2017).
- Reverri, E., Devitt, A., Kajzer, J., Baggs, G. & Borschel, M. Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2′-Fucosyllactose. Nutrients 10, 1346 (2018).
- Holscher, H. D., Davis, S. R. & Tappenden, K. A. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J. Nutr. 144, 586–91 (2014).
- Autran, C. A., Schoterman, M. H. C., Jantscher-Krenn, E., Kamerling, J. P. & Bode, L. Sialylated galacto-oligosaccharides and 2’-fucosyllactose reduce necrotising enterocolitis in neonatal rats. Br. J. Nutr. 116, 294–299 (2016).
- Goehring, K. C. et al. Similar to Those Who Are Breastfed , Infants Fed a Formula Containing 2’-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized. J Nutr 146, 2559–2566 (2016).
- Field CJ, Van Aerde JE, Robinson LE, Clandinin MT. (2008) Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Br J Nutr. 2008 Jan;99(1):91-9.
- Lapillone A. Enteral and Parenteral Lipid Requirements of Preterm Infants. In: Koletzko B, Poindexter B, Uauy R, editors. Nutr. Care Preterm Infants Sci. Basis Pract. Guidel., Basel: Karger; 2014, p. 82–98. doi:10.1159/000358460.
- Birch EE, Khoury JC, Berseth CL, Castañeda YS, Couch JM, Bean J, et al. The Impact of Early Nutrition on Incidence of Allergic Manifestations and Common Respiratory Illnesses in Children. J Pediatr 2010;156:902-906.e1. doi:10.1016/j.jpeds.2010.01.002.
- Field CJ, Van Aerde JE, Robinson LE, Thomas Clandinin M. Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Br J Nutr 2008;99:91–9. doi:10.1017/S0007114507791845.
- Radzikowska U, Rinaldi AO, Çelebi Sözener Z, et al (2019) The Influence of Dietary Fatty Acids on Immune Responses. Nutrients. 2019 Dec 6;11(12):2990.